

Aggregation

A class has an entity reference, it is known as Aggregation. Aggregation represents

HAS-A relationship.

Consider a situation; Employee object contains information such as id, name,

emailId etc. It contains one more object named address, which contains its own

informations such as city, state, country etc. as given below.

EX:

class Employee{

int id;

String name;

Address address; //Address is a class (Aggregation)

...

}

In such case, Employee has an entity reference address, so relationship is

Employee HAS-A address.

Why use Aggregation? Ans :For Code Reusability.

class Operation{

 int square(int n){

 return n*n;

 }

}

class Circle{

Simple Example of Aggregation

In this example, we have created the

reference of Operation class in the Circle

class.

Ammar
Highlight

 Operation op; //aggregation

 double pi=3.14;

 double area(int radius){

 op=new Operation();

 return pi* op.square(radius); // code reusability

 }

public static void main(String args[]){

 Circle c=new Circle();

 System.out.println(c.area(5));

 }

}

When use Aggregation?

Code reuse is also best achieved by aggregation when there is no is-a relationship.

Understanding meaningful example of Aggregation

In this example, Employee has an object of Address, address object contains its

own information such as city, state, country etc. In such case relationship is

Employee HAS-A address.

public class Address {

String city, state,country;

public Address(String city, String state, String country) {

 this.city = city;

 this.state = state;

 this.country = country;

}

}

Ammar
Highlight

public class Emp {

int id;

String name;

Address address;

public Emp(int id, String name, Address address) {

 this.id = id;

 this.name = name;

 this.address=address;

}

void display(){

System.out.println(id+" "+name);

System.out.println(address.city+" "+address.state+" "+address.country);

}

public static void main(String[] args) {

Address address1=new Address("gzb","UP","india");

Address address2=new Address("gno","UP","india");

Emp e=new Emp(111,"varun",address1);

Emp e2=new Emp(112,"arun",address2);

e.display();

e2.display();

}

}

Enumerations :

An enum (Enumerations) is a special "class" that represents a group of constants

(unchangeable variables, like final variables).

Output:111 varun

 gzb UP india

 112 arun

 gno UP india

Ammar
Highlight

To create an enum, use the enum keyword (instead of class or interface), and

separate the constants with a comma. Note that they should be in uppercase

letters:

Example

enum Level {

 LOW,

 MEDIUM,

 HIGH

}

You can access enum constants with the dot syntax:

Level myVar = Level.MEDIUM;

Note: Enum is short for "enumerations", which means "specifically listed".

Enum inside a Class

You can also have an enum inside a class:

Example

public class Main {

 enum Level {

 LOW,

 MEDIUM,

 HIGH

 }

 public static void main(String[] args) {

 Level myVar = Level.MEDIUM;

 System.out.println(myVar);

 }

}

The output will be:

Ammar
Textbox
class EnumExample5{
enum Day{ SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY}
public static void main(String args[]){
Day day=Day.MONDAY;

switch(day){
case SUNDAY:
 System.out.println("sunday");
 break;
case MONDAY:
 System.out.println("monday");
 break;
default:
System.out.println("other day");
}
}}

MEDIUM

Difference between Enums and Classes

- An enum can, just like a class, have attributes and methods. The only

difference is that enum constants are public, static and final

(unchangeable - cannot be overridden).

- An enum cannot be used to create objects, and it cannot extend other

classes (but it can implement interfaces).

Why And When To Use Enums?

Use enums when you have values that you know aren't going to change, like

month days, days, colors etc.

Method Overriding

If subclass (child class) has the same method as declared in the parent class, it is

known as method overriding in Java.

In other words, if a subclass provides the specific implementation of the method

that has been declared by one of its parent class, it is known as method overriding.

Usage of Java Method Overriding

- Method overriding is used to provide the specific implementation of a

method which is already provided by its superclass.

- Method overriding is used for runtime polymorphism.

Rules for Java Method Overriding

- The method must have the same name as in the parent class

- The method must have the same parameter as in the parent class.

- There must be an IS-A relationship (inheritance).

Understanding the problem without method overriding

Ammar
Highlight

Ammar
Highlight

Ammar
Highlight

Let's understand the problem that we may face in the program if we don't use

method overriding.

class Vehicle{

 void run(){System.out.println("Vehicle is running");}

}

class Bike extends Vehicle{

 public static void main(String args[]){

 Bike obj = new Bike();

 obj.run();

 }

}

Output is Vehicle is running

Problem is that I have to provide a specific implementation of run() method in

subclass that is why we use method overriding.

Example of method overriding

In this example, we have defined the run method in the subclass as defined in the

parent class but it has some specific implementation. The name and parameter of

the method are the same, and there is IS-A relationship between the classes, so

there is method overriding.

class Vehicle{

 void run(){System.out.println("Vehicle is running");}

}

class Bike2 extends Vehicle{

 void run(){System.out.println("Bike is running safely");}

 public static void main(String args[]){

 Bike2 obj = new Bike2();//creating object

 obj.run();//calling method

 }

}

Output:

Bike is running safely

class Bank{

int getRateOfInterest(){return 0;}

}

class Bank1 extends Bank{

int getRateOfInterest(){return 8;}

}

 class Bank2 extends Bank{

int getRateOfInterest(){return 7;}

}

class Bank3 extends Bank{

int getRateOfInterest(){return 9;}

}

class Test2{

public static void main(String args[]){

Bank1 s=new Bank1 ();

Bank2 i=new Bank2 ();

Bank3 a=new Bank3 ();

System.out.println("Bank1 Rate of Interest: "+s.getRateOfInterest());

System.out.println("Bank2 Rate of Interest: "+i.getRateOfInterest());

System.out.println("Bank3 Rate of Interest: "+a.getRateOfInterest());

Output:

Bank1 Rate of Interest: 8

Bank2 Rate of Interest: 7

Bank3 Rate of Interest: 9

}

}

Can we override static method?

No, a static method cannot be overridden. It can be proved by runtime

polymorphism, so we will learn it later.

Can we override java main method?

No, because the main is a static method.

What are the Difference between method overloading and method

overriding?

Abstraction

Abstract Class is a type of class in OOPs that declare one or more abstract

methods. These classes can have abstract methods as well as normal methods. A

normal class cannot have abstract methods. An abstract class is a class that

contains at least one abstract method.

Abstract class: is a restricted class that cannot be used to create objects (to

access it, it must be inherited from another class).

Abstract Method is a method that has just the method definition but does not

contain implementation. A method without a body is known as an Abstract

Method.

Abstract classes and Abstract methods :

- An abstract class is a class that is declared with an abstract keyword.

- An abstract method is a method that is declared without implementation.

- An abstract class may or may not have all abstract methods. Some of them

can be concrete methods

Ammar
Highlight

Ammar
Highlight

- A method defined abstract must always be redefined in the subclass, thus

making overriding compulsory OR either make the subclass itself abstract.

- Any class that contains one or more abstract methods must also be declared

with an abstract keyword.

- There can be no object of an abstract class.

- An abstract class can have parameterized constructors and the default

constructor is always present in an abstract class.

abstract class Animal {

 public abstract void animalSound();

 public void sleep() {

 System.out.println("Zzz");

 }

}

From the example above, it is not possible to create an object of the Animal class:

Animal myObj = new Animal(); // will generate an error

To access the abstract class, it must be inherited from another class. Let's convert

the Animal class we used in the Polymorphism

Example

abstract class Animal {

 // Abstract method (does not have a body)

 public abstract void animalSound();

 public void sleep() {

 System.out.println("Zzz");

 }

}

class cat extends Animal {

Ammar
Highlight

Ammar
Highlight

Ammar
Highlight

Ammar
Highlight

Ammar
Highlight

Ammar
Highlight

 public void animalSound() {

 System.out.println("The cat says: mee mee");

 }

}

class Main {

 public static void main(String[] args) {

 cat mycat = new cat (); // Create a cat object

 mycat.animalSound();

 mycat.sleep();

 }

}

Note: Abstraction can also be achieved with Interfaces,

Encapsulation vs Data Abstraction

- Encapsulation is data hiding(information hiding) while Abstraction is

detailed hiding(implementation hiding).

- While encapsulation groups together data and methods that act upon the

data, data - abstraction deal with exposing the interface to the user and

hiding the details of implementation.

Advantages of Abstraction

- It reduces the complexity.

- Avoids code duplication and increases reusability.

- Helps to increase the security of an application or program as only important

details are provided to the user.

When can we use abstract classes ?

There are situations in which we will want to define a superclass that declares the

structure of a given abstraction without providing a complete implementation of

every method. That is, sometimes we will want to create a superclass that only

defines a generalization form that will be shared by all of its subclasses, leaving it

to each subclass to fill in the details.

Consider a classic “shape” example, perhaps used in a computer-aided design

system or game simulation. The base type is “shape” and each shape has a color,

size, and so on. From this, specific types of shapes are derived (inherited)-circle,

square, triangle, and so on — each of which may have additional characteristics

and behaviors. For example, certain shapes can be flipped. Some behaviors may be

different, such as when you want to calculate the area of a shape. The type

hierarchy embodies both the similarities and differences between the shapes.

abstract class Shape {

 String color;

 abstract double area();

 public abstract String toString();

 public Shape(String color)

 {

 System.out.println("Shape constructor called");

 this.color = color;

 }

 public String getColor() { return color; }

}

class Circle extends Shape {

 double radius;

 public Circle(String color, double radius)

 {

 super(color);

 System.out.println("Circle constructor called");

 this.radius = radius;

 }

 @Override double area()

 {

 return Math.PI * Math.pow(radius, 2);

 }

 @Override public String toString()

 {

 return "Circle color is " + super.getColor()

 + "and area is : " + area();

 }

}

class Rectangle extends Shape {

 double length;

 double width;

 public Rectangle(String color, double length, double width)

 {

 super(color);

 System.out.println("Rectangle constructor called");

 this.length = length;

 this.width = width;

 }

 @Override double area() { return length * width; }

 @Override public String toString()

 {

 return "Rectangle color is " + super.getColor()

 + "and area is : " + area();

 }

}

public class Test {

 public static void main(String[] args)

 {

 Shape s1 = new Circle("Red", 2.2);

 Shape s2 = new Rectangle("Yellow", 2, 4);

 System.out.println(s1.toString());

 System.out.println(s2.toString());

 }

}
Output

Shape constructor called

Circle constructor called

Shape constructor called

Rectangle constructor called

Circle color is Redand area is : 15.205308443374602

Rectangle color is Yellowand area is : 8.0

	lic abstract void animalSound();

